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generalization, called generalized predictability, provides a 
new approach to filtering in such a way that processes with 
long time scales do not contribute to predictability. This 
generalization is important when the system’s climatologi-
cal distribution is much broader than the range of climates 
experienced in the recent past. These concepts are illustrated 
using a simple model in which all aspects of predictability 
can be solved exactly.

Keywords  Predictability · Information theory

1  Introduction

The discovery of dynamical chaos by Lorenz (1963) con-
stitutes one of the most seminal contributions to twentieth 
century science. Lorenz’s lucid description of chaos and 
its implications for weather predictability have hardly been 
surpassed. Since Lorenz’s paper, various facets of predict-
ability have been developed in numerous papers (see Palmer 
and Hagedorn 2006, for a review). In general, a variable 
is said to unpredictable from a set of observations if it is 
independent of those observations. This definition requires 
comparing two distributions: one that depends on observa-
tions and one that does not. These distributions are called 
the forecast and climatological distributions, respectively. 
When these two distributions are equal, then the variable is 
independent of the observations and therefore unpredictable. 
In principle, the forecast distribution can be derived from the 
governing dynamical equations using Liouville’s theorem 
or the Fokker–Planck equation. Whether the climatological 
distribution exists is a difficult question that is the subject 
of ergodic theory. In this paper, we assume the climatologi-
cal distribution is equal to the forecast distribution initial-
ized in the infinite past. In practice, these distributions can 

Abstract  The standard framework of predictability defines 
a variable to be unpredictable from a set of observations if it 
is independent of those observations. This definition requires 
comparing two distributions: a forecast distribution that is 
conditioned on observations, and a climatological distribu-
tion that is not. However, if the system is non-stationary 
because of externally forced climate changes, or is charac-
terized by a climatological distribution that is much broader 
than the distribution of states over the recent past, then a 
rigorous application of this framework gives unsatisfying 
answers to reasonable questions about weather and climate 
predictability. This paper proposes generalizations of this 
framework that resolves these limitations and is consistent 
with the definition of independence. The first generalization, 
which was proposed effectively by Lorenz and Leith, is to 
distinguish initial-value predictability from forced predict-
ability, where the latter is defined by time variations in the 
climatological distribution. This paper goes a step further 
by introducing a new measure, called total climate predict-
ability, that can be decomposed into a sum of previously 
known measures of forced and initial-value predictability, 
namely relative entropy and mutual information. The second 

 *	 Timothy DelSole 
	 tdelsole@gmu.edu

	 Michael K. Tippett 
	 mkt14@columbia.edu

1	 Department of Atmospheric, Oceanic, and Earth Sciences, 
George Mason University, Fairfax, USA

2	 Department of Applied Physics and Applied Mathematics, 
Columbia University, New York, NY, USA

3	 Department of Meteorology, Center of Excellence 
for Climate Change Research, King Abdulaziz University, 
Jeddah, Saudi Arabia

http://orcid.org/0000-0003-2041-3024
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-017-3939-8&domain=pdf


532	 T. DelSole, M. K. Tippett 

1 3

be estimated from an ensemble of forecasts, in which each 
member experiences the same time-dependent external forc-
ing and evolves according to the governing physical laws, 
but with the forecast ensemble initialized at the present time 
and the climatological ensemble initialized long before the 
present time (Leith 1978). Although this framework pro-
vides a rigorous foundation for defining predictability, it has 
at least two unsatisfying elements.

The first unsatisfying element concerns externally forced 
variability. For instance, changes in solar insolation due to 
the earth’s orbit about the sun lead to a characteristic annual 
cycle in local climate. Because the climatological distribu-
tion is obtained from the same equations as the forecast 
distribution, it includes the annual cycle. As a result, the 
annual cycle is contained in both the forecast and clima-
tological distributions and therefore does not contribute to 
predictability, which requires a difference in distributions. 
This formulation is often viewed as desirable since it implies 
a forecaster does not receive credit for predicting, say, that 
summer will be warmer than winter. However, an inescap-
able consequence of this formulation is that the response to 
other forms of external forcing also should be included in the 
climatological distribution, and therefore will not contrib-
ute to predictability. In particular, the response to changes 
in greenhouse gas concentration due to human activity 
should be included in the both the forecast and climatology, 
and therefore would not contribute to predictability. Such 
a framework is very unsatisfying given the importance of 
predicting climate change. Lorenz (1975) recognized this 
issue and introduced “predictability of the second kind,” or 
what is now called boundary-value predictability or forced 
predictability. A framework that accommodates externally 
forced climate changes has been discussed in several papers 
(Lorenz 1970, 1975; Leith 1978; Meehl et al. 2009; Bran-
stator and Teng 2010). The present paper goes beyond these 
studies by giving a mathematically explicit treatment and by 
proposing a new measure, called total climate predictability, 
that can be decomposed as the sum of previously proposed 
measures of initial-value predictability and forced predict-
ability. Part of this framework has appeared previously in 
DelSole (2017).

The above formulation of initial-value and forced pre-
dictability still has certain unsatisfying elements. Specifi-
cally, the climatological distribution derived from the above 
framework may be too broad for certain applications. For 
instance, paleo-climate records show that large climate 
changes can occur abruptly over periods as short as a dec-
ade (Alley and Clark 1999). This fact demonstrates that the 
climate system can display very different behavior under 
nearly identical external forcing. Consequently, the system’s 
climatological distribution may be much broader than the 
distribution that describes the past few decades. Under such 
a broad climatology, weather would be deemed predictable 

for as long as the associated forecast predicts no shift in 
climate (possibly for years). This particular issue does not 
arise often in predictability studies because climate models 
often are selected according to their ability to simulate the 
climate of the past century when given the corresponding 
forcing. Whether this criterion leads to an overly narrow 
climatological distribution is unclear. In any case, funda-
mentally similar issues arise even in seasonal predictability 
studies. For instance, some droughts can last a decade or 
longer (“mega-droughts”; Cook et al. 2010). To the extent 
that these droughts occur naturally, the climatological distri-
bution should include them, which leads to the same unsat-
isfying conclusion: weather would be predictable for as 
long as the associated forecast predicts the mega-drought to 
continue. Similarly, other long time-scale processes, e.g., El 
Niño, ocean overturning circulations, and land-ice, broaden 
the climatological distribution. To resolve this issue, we 
propose generalized predictability, based on a conditional 
climatology, that effectively filters out predictability on long 
time scales so that the predictability on short time scales 
can be identified. This formalism can define a spectrum of 
predictability questions distinguished by time scale.

This paper is organized as follows. Section 2 reviews the 
standard framework of predictability. Section 3 discusses 
limitations of the standard framework and describes a gener-
alized framework that resolves them. Specifically, we define 
forced predictability as changes in the climatology over time, 
and define a conditional climatology that allows predictabil-
ity on different time scales to be isolated. Section 4 proposes 
a new measure of predictability called total climate predict-
ability that captures both initial-value and forced predict-
ability. Section 5 illustrates the above concepts in a forced 
AR(1) model, where all distributions required to evaluate 
predictability can be written in closed form. This paper con-
cludes with a summary of our results.

2 � What is predictability?

Most people agree that the outcome of a (fair) coin toss is 
unpredictable. Why? In other words, can you explain pre-
cisely what makes you say a coin toss is unpredictable? Is 
it because you cannot make a prediction about it? Actually, 
you can make a prediction about it. Here it is: the prob-
ability of heads is 50%. Moreover, this prediction correctly 
describes the outcomes. So there you have it—a falsifiable 
prediction about a coin toss! Now perhaps you believe a 
coin toss is unpredictable because you can make only 
probabilistic predictions about it, as opposed to making a 
prediction with certainty. This also is not true: all forecasts 
of nature are uncertain, and the most complete description 
of uncertainty is a probability distribution. Hence, all fore-
casts of nature should be probabilistic. Therefore, the mere 
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probabilistic nature of the forecast does not make a coin toss 
unpredictable.

The reason a coin toss is considered unpredictable is 
because the outcome is independent of observations typi-
cally available to the forecaster prior to the toss.1 The 
key word here is independent. More precisely, a variable 
is unpredictable from a given set of observations if it is 
independent of those observations. Any other definition of 
predictability would lead to situations that contradict the 
meaning of the term. For instance, if predictability were not 
defined based on statistical independence, then a variable 
might be declared predictable even though it is independent 
of observations, or be declared unpredictable even though 
there exists a dependence on observations.

To define predictability mathematically, let the observa-
tions available at time t be denoted as Ot (which includes 
observations before time t), and let the variable being pre-
dicted at future time t + � be denoted as Y. The variable t is 
called initial condition time, � is called lead time (usually 
positive), and t + � is called verification time. The most com-
plete description of the future value of Y given observations 
Ot is the conditional distribution pt+�(y|ot). This distribution 
is called the forecast distribution.2 The distribution of the 
future value of Y unconditional on observations is denoted 
pt+�(y). This distribution is called the climatological distri-
bution of Y. The variable Y is said to be unpredictable from 
Ot, in an initial-value sense, if it is independent of Ot:

It follows that a necessary condition for predictability is 
pt+�(y|ot) ≠ pt+�(y) for some ot. The term predictability is 
short for initial-value predictability.

Strictly speaking, predictability at t + � depends on the 
quality, type, and spatio-temporal distribution of observa-
tions at time t. Thus, a variable Y might be deemed predicta-
ble with respect to one set of observations but unpredictable 
with respect to a different set of observations. For instance, 
many hurricanes over the ocean were unobserved during the 
pre-satellite era and therefore land fall was difficult to pre-
dict. After satellite data became available, many hurricanes 
over the ocean that previously would have been unobserved 

(1)

pt+�(y|ot) = pt+�(y)

forecast climatological

(
for no initial

value predictability

)
.

could be identified and tracked to provide skillful predic-
tions of land fall. Predictability also may be improved simply 
by reducing observational errors from the existing network. 
This dependence of predictability on observations raises 
questions about the best observing system for maximizing 
predictability, especially whether it is advantageous for the 
observational network to adapt to the synoptic situation 
(Lorenz and Emmanuel 1998).

If a variable has no initial-value predictability, there still 
exists meaningful information about its future value. Specifi-
cally, the climatological distribution describes the variable’s 
future value. For example, the weather a year from today 
cannot be predicted with precision, but the season will be 
the same and that knowledge allows us to predict that the 
temperature will be in a certain range characteristic for that 
season. A variable is unpredictable only in the sense that 
available observations do not tell us anything different than 
what we already knew from the climatological distribution. 
This point was illustrated by the coin flip: the uncondi-
tional distribution is “50% heads, 50% tails” and accurately 
describes the future coin flip. Because this distribution is not 
altered by conditioning on current observations, the event is 
unpredictable.

The basis of any prediction of the future is that variables 
change with time according to certain laws. In weather and 
climate, the relevant laws of physics are often modeled by 
governing equations of the form

where y1,… , yS are a large but finite number of state vari-
ables and Ni are nonlinear functions of the state variables. 
For instance, all coupled atmosphere-ocean general circu-
lation models are of this form. If the laws are such that the 
future state is specified uniquely by the present state, then 
the system is said to be deterministic, otherwise it is called 
stochastic.

Distributions derived from (2) satisfy the Markov prop-
erty, which means that the distribution conditioned on a 
sequence of past states depends only on the most recent 
state. Accordingly, the dependence of the future state on the 
present is described by the transition kernel pt+�(y|yt) (also 
called a stochastic kernel or Markov kernel). The transition 
kernel is essentially a propagator obtained by integrating the 
governing equations. More precisely, the transition kernel 
is obtained from the governing equations (2) by solving the 
Chapman–Kolomogorov equation (Gardiner 1990, ch2). If 
the governing equations are deterministic and satisfy cer-
tain regularity conditions, then the Chapman–Kolomogorov 
equation can be written in a differential form called Liou-
ville’s equation. If the governing equations are stochastic 
and of a certain class, then the Chapman–Kolomogorov 
equation can be written in a differential form called the 

(2)
dyi

dt
= Ni(y1, y2,… , yS),

1  In reality, coin flips are predictable if the flipping is performed by a 
carefully constructed machine. The apparent randomness of coin flips 
arises from the fact that humans are “sloppy flippers” (Diaconis et al. 
2007).
2  This paper employs the notation that a capital letter denotes a ran-
dom variable and a lower case letter denotes the values on which it 
takes. Also, technically, Y is a vector containing all state variables, 
but distinguishing vectors from scalars leads to a cumbersome nota-
tion without adding anything to the formalism, so for simplicity the 
multivariate nature of the state vector is ignored.



534	 T. DelSole, M. K. Tippett 

1 3

Fokker–Planck equation. In either case, the transition ker-
nel is derived by solving a partial differential equation under 
suitable boundary conditions and given initial condition. 
Alternatively, an approximate transition kernel might be esti-
mated empirically from a long record of past observations.

The state of a real system is estimated from observa-
tions of that system. However, real observations contain 
random errors and gaps in spatial coverage. As a result, no 
unique state y can be inferred from observations—many 
different states Y are compatible with the observed reali-
zation of ot. The distribution of states that are compatible 
with the observations ot is described by the analysis dis-
tribution, denoted pt(y|ot) (note that the lead time is zero). 
The derivation of this distribution is a central goal of data 
assimilation (Jazwinski 1970).

The laws of probability imply that the forecast and 
analysis distributions are related as

where pt+�(y|yt, ot) is the distribution of the future value 
of Y conditioned on the present value and conditioned on 
presently available observations. Note that the integration 
variable yt is a vector, but for simplicity the multivariate 
nature of the integration is ignored. For Markov systems, 
observations do not add information about the future if the 
initial state is known, hence

Substituting this relation into (3) yields

This equation defines how dynamics connects the analysis 
and forecast distributions. The solution is illustrated sche-
matically in Fig. 1. The prediction process begins by observ-
ing the system, which constrains the distribution of states at 
time t. This distribution can be interpreted as a collection 
of initial states, called an ensemble, with relative frequen-
cies proportional to the probability density. In weather and 
climate studies, this ensemble can be imagined as a theoreti-
cal collection of Earths, each subjected to the same exter-
nal forcing. As time advances forward, each member of the 
ensemble evolves in accordance with the physical laws. The 
initial states may be visualized as a cloud of points in state 
space, each of which streams through state space as it fol-
lows a trajectory determined by physical laws. The distribu-
tion at any future time is obtained by integrating over all 
initial states.

Predictability of the climate system is limited by the 
fact that the atmosphere is chaotic. A chaotic system is one 

(3)pt+�(y|ot) = ∫ pt+�(y|yt, ot)pt(yt|ot)dyt,

(4)pt+�(y|yt, ot) = pt+�(y|yt).

(5)
pt+�(y|ot) = ∫ pt+�(y|yt) pt(yt|ot) dyt.

forecast dynamics analysis

whose evolution is sensitive to small changes in the initial 
condition. This means that if the atmosphere were to come 
arbitrarily close to a state which it had assumed previously, 
the subsequent evolution would diverge wildly from the 
previous evolution after sufficient time. As a consequence, 
even the smallest uncertainties in the initial state translate 
into large uncertainties in the forecast after sufficient time.

For sufficiently small initial errors, predictability can be 
characterized by a set of Lyapunov exponents that measure 
error-growth rate. Atmospheric models based on the prim-
itive equations suggest that small amplitude perturbations 
in the atmosphere amplify with an average doubling time 
of about 1.8 days, suggesting an upper limit of predict-
ability of about two weeks (Simmons and Hollingsworth 
2002). However, atmospheric predictability depends on 
spatial structure, with large-scale perturbations being more 
predictable than small-scale perturbations, so planetary-
scale waves are found to be predictable even for averages 
over 16–46 days leads (Shukla 1981). Planetary waves 
may also interact with stratospheric waves to enhance 
their predictability (Tripathi et al. 2015). Beyond a few 
weeks, slowly varying components of the climate system, 
such as sea surface temperature, soil moisture, snow cover, 
or sea ice thickness, are still predictable owing to their 
slower time scale. These slower components can influ-
ence the atmosphere and hence give rise to predictability 
of atmospheric variables beyond a month (Charney and 
Shukla 1981; Shukla 1998). Because these slower compo-
nents lie on the earth’s surface, this type of predictability 
is called boundary forced predictability. To the extent that 
atmospheric variables are independent of the slower com-
ponents on long time scales, they can be treated as white 
noise stochastic forcing (Hasselmann 1976). In addition, 
coupled atmosphere-ocean systems support new mecha-
nisms of predictability beyond those found in the separate 
uncoupled systems, the most well established of which is 
the El Niño Southern Oscillation (ENSO; Philander 1990), 
which has a doubling time of several months (Goswami 

Fig. 1   Schematic illustrating how initial conditions (from the analy-
sis distribution) and dynamics contribute to the forecast distribution, 
as described in (5)
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and Shukla 1991) and can be predicted a few months in 
advance (Barnston et al. 2012).

Although small errors can grow exponentially in cha-
otic systems, the growth rate slackens when errors become 
large. The question arises as to when the errors become so 
large that all predictability is lost. The limit of predictability 
depends on how close the forecast distribution is to the cli-
matological distribution. Defining this limit requires defin-
ing the climatological distribution.

The problem of deducing the climatological distribution 
from the nonlinear dynamical equations is difficult. In fluid 
mechanics, this is tantamount to the closure problem of 
turbulence, considered one of the great unsolved problems 
of classical physics (Nelkin 1992). Indeed, merely proving 
the existence of the climatological distribution is a difficult 
problem in ergodic theory. Nevertheless, probability laws 
assert that if it exists, then it must satisfy the equality

where p(ot) is the probability of the observations. We can 
make progress by assuming that the forecast distribution 
becomes independent of the initial observations in the limit 
of large lead time:

This assumption appears to hold for realistic climate models. 
If the observations are perfect, complete, and therefore indis-
tinguishable from the state, the above identity is the defining 
property of a transitive system (Lorenz 1968). To understand 
the consequence of assumption (7), consider applying the 
transformation t → t − � to (6) and taking the limit � → ∞:

where we have used the fact that (7) implies that the fore-
cast distribution pt(y|ot−�) is independent of ot−� for large �, 
and therefore can be taken outside the integral. We have also 
invoked the theorem that the limit of a sum equals the sum of 
the limits, the limit of a product equals the product of the lim-
its, and the integral of a probability distribution equals one. 
Identity (8) shows that if (7) is true, then the climatological 
distribution can be obtained by evaluating the forecast distri-
bution at asymptotically long lead times. This result justifies 

(6)pt+�(y) = ∫ pt+�(y|ot)p(ot)dot,

(7)
lim

s→−∞
pt+�(y|os) = some distribution independent of os.

(8)

pt(y) = lim
�→∞∫ pt(y|ot−�)p(ot−�)dot−�

= ∫
(
lim
�→∞

pt(y|ot−�)
)(

lim
�→∞

p(ot−�)dot−�

)

=
(
lim
�→∞

pt(y|ot−�)
)(

lim
�→∞∫ p(ot−�)dot−�

)

= lim
�→∞

pt(y|ot−�),

the familiar rule of measuring initial-value predictability by 
the extent to which the forecast differs from its “saturation” 
distribution at long lead times (i.e., because the saturation 
distribution is the climatology).

If the climatological distribution pt(y) is independent of 
time, then the system is said to be stationary. A stationary 
climatological distribution describes the relative frequency 
of states associated with sampling the system randomly in 
time. However, the observed climate system is clearly non-
stationary owing to annual and diurnal cycles (e.g., winter 
and summer states clearly belong to different distributions). 
A more realistic assumption is that the climatological dis-
tribution is cyclostationary, i.e., it is a periodic function of 
time. For cyclostationary systems, the climatological distri-
bution describes the relative frequency of states associated 
with sampling the system at random years but conditioned 
on calendar day and hour. A common approach to estimating 
the mean of the climatological distribution is to compute the 
mean of each calendar day and hour over a 30-year period 
(but see Narapusetty et al. 2009).

A representative schematic of the forecast and climato-
logical distributions is shown in Fig. 2. Typically, the initial 
forecast is localized in state space and then spreads out with 
time. The spread is related to forecast uncertainty and often 
referred to as noise. The mean of the forecast often is called 
signal. As time advances, the forecast distribution typically 
approaches the climatological distribution. As a result, dif-
ferences between the two distributions diminish with lead 
time, leading to decay of initial-value predictability. The pre-
dictability time scale is defined as the minimum lead time 
at which the difference between forecast and climatological 
distributions falls below some threshold.

It should be recognized that the variable being predicted 
may be a state variable averaged over some period of time, 
rather than the instantaneous value of the state variable. 
For instance, weather predictability and seasonal predict-
ability are both examples of initial-value predictability, but 
the former concerns variables averaged over hours or days 
while the latter concerns variables averaged over months or 
seasons. Decadal predictability concerns the predictability 

Forecast

Climatology

Fig. 2   Schematic of representative forecast and climatological distri-
butions
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of multi-year averages of state variables. Other forms of 
predictability are discussed in the literature (e.g, “potential 
predictability”), but the definitions are not always consistent 
and so will not be defined here.

3 � Climatology in a changing climate

The above framework is used in many predictability stud-
ies. In this section, we show that rigorous application of this 
framework leads to unsatisfying conclusions if the clima-
tological distribution varies from year to year or is overly 
broad compared to the climate of the recent past. We then 
propose extensions of the above framework that resolves 
these limitations.

For illustration purposes, suppose the dynamical system 
(2) is modified as

where fi are time-dependent forcing terms that account for 
external forcing. The climatological distribution of this sys-
tem requires solving (9) starting from the distant past, and 
would be expected to vary in time in response to changes 
in external forcing fi. Changes in climatological distribu-
tion from year to year are called climate changes. Thus, 
climate changes due to external forcing, such as that due 
to solar variability or human-cause changes in greenhouse 
gas concentrations, would be included in the climatological 
distribution. Because only differences relative to the clima-
tological distribution contribute to predictability, it follows 
that climate changes do not contribute to initial-value pre-
dictability. In fact, climate change is treated the same as 
annual and diurnal cycles: they are each subsumed into the 
climatological distribution. However, changes in the clima-
tological distribution relative to its distribution in different 
years, especially those due to global warming, are of consid-
erable interest in themselves. To distinguish questions of this 
type from those of initial-value predictability, Lorenz (1975) 
suggested a new type of predictability called predictability 
of the second kind, or what is today called forced predict-
ability or boundary-value predictability.3 These terms are 
used even if the forcing itself is unpredictable (e.g., multi-
decadal variations due to volcanic eruptions or solar vari-
ability). Assessing whether a climate forcing changes the 

(9)
dyi

dt
= Ni(y1, y2,… , yS) + fi,

climatological distribution of a variable is called climate 
change detection. Both kinds of predictability involve meas-
uring differences in distributions, hence tools used to ana-
lyze one kind of predictability often are useful in the other.

The above framework for initial-value and forced predict-
ability still may be unsatisfying. In particular, the climato-
logical distribution derived from (7) may be much broader 
than is appropriate for certain problems. For instance, if 
the climatological distribution is obtained by initializing 
the system in the infinite past, then even orbital parame-
ters would have a large uncertainty due to the impacts of 
random planetesimals over billions of years (indeed, this 
climatology may assign non-zero probability to a universe 
without Earth). Aside from this, the climate system may 
display a wide range of variability even for the same exter-
nal forcing. For instance, geological evidence reveals that 
the climate can change drastically over short periods (e.g., 
as much as 10 ◦C locally in 10 years; Alley et al. 2003). 
The existence of abrupt climate change demonstrates that 
the climate can have very different distributions over time 
periods subjected to nearly identical forcing. Because a 
climatological distribution describes all climates compat-
ible with the physical laws, it can be much broader than the 
distribution that describes the recent past. Under a broad 
climatology, even weather could be deemed predictable for 
years, provided the associated forecast predicts no shift in 
climate. A framework that expunges weather predictabil-
ity is unsatisfying. The above problem might seem esoteric 
because overly broad climatologies do not occur frequently 
in practice. However, this impression might be an artifact 
of assessing climate models on the basis of their ability to 
simulate the last few decades. In particular, the climatology 
of the past few decades may be unrealistically narrow. For 
instance, some models suggest that even El Niño can behave 
differently across multi-decadal epochs under fixed external 
forcing (Wittenberg 2009).

In any case, essentially the same issues occur in weather 
and seasonal predictability. Specifically, weather is affected 
by a variety of natural, long time-scale processes, e.g., El 
Niño, the Atlantic Meridional Overturning Circulation 
(AMOC) and mega-droughts. As a result, the climatologi-
cal distribution that describes the joint behavior of weather 
and long time-scale processes is broader than the distribu-
tion that is conditioned on the state of a long time-scale 
process. Unfortunately, some attempts to define predict-
ability conditioned on the state of a long time-scale process 
have been based on problematic modeling frameworks. For 
instance, one familiar approach is to run an atmospheric gen-
eral circulation model (AGCM) with specified sea surface 
temperatures. However, the unphysical one-way forcing of 
an AGCM with prescribed lower boundary conditions raises 
questions about how results from such models relate to the 
fully coupled system (Barsugli and Battisti 1998). A similar 

3  This definition was not explicitly stated in Lorenz (1975), but is 
reasonably clear from context. For instance, to introduce predictabil-
ity of the second kind, Lorenz wrote “We may inquire, for example, 
what would be the effect upon the climate of doubling the concentra-
tion of CO

2
 in the atmosphere…” This question is a statement about 

changes in climatological distribution and is clearly within the scope 
of detection and attribution analysis.
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criticism can be raised for any modeling framework in which 
one artificially constrains variables in a climate model that 
would ordinarily feedback to other variables (e.g., sea sur-
face temperatures, land variables, sea ice).

Instead of conditioning explicitly on the state of a long 
time-scale process, we propose a formalism for filtering 
out the predictability of processes with long time scales, so 
that predictability on shorter time scales can be identified. 
The question arises as to whether this filtering can be done 
in a mathematically consistent way without constraining a 
dynamical model in an unphysical way. We propose such 
an approach by defining a conditional climatology, which 
is nothing more than a forecast initialized in the finite past, 
s, where s < t:

Then, generalized predictability is measured by the degree 
to which the forecast pt+�(y|ot) differs from the conditional 
climatology pt+�(y|os). For instance, if t − s = 30 years, pro-
cesses with time scales much longer than 30 years would 
be virtually identical in the forecast and climatology and 
therefore not contribute to predictability in our generalized 
sense. In this way, predictability of processes with time 
scales longer than 30 years are selectively attenuated. On 
the other hand, processes on shorter time scales, such as 
atmospheric weather and El Niño, would differ between the 
forecast and climatology and therefore contribute to pre-
dictability. As s increases, the climatology (10) is initial-
ized further in the past and therefore broadens to describe a 
wider range of climate variability, increasing the generalized 
predictability due to processes with time scales longer than 
30 years. The greater the value of t − s, the greater the dif-
ferences between forecast and conditional climatology, and 
the greater the predictability of long time-scale processes. 
Conversely, as s approaches t, the closer the forecast and 
climatology, and the smaller the predictability of long time-
scale processes. The parameter s serves as a filter parameter 
that controls the time scale of processes that are included in 
generalized predictability.

Does the above proposal lead to a definition of predict-
ability that is consistent with statistical independence? Yes, 
because generalized predictability is based on conditional 
independence. Here, conditional independence means

where pt+�(y|ot, os) denotes the conditional probability of 
Y given both Ot and Os. This identity differs from (1) only 
by os appearing as a conditional in both distributions. For-
mally, this identity expresses the fact that Y is conditionally 
independent of Ot given Os = os, for any value of os. Recall 
that, by definition, Ot includes all observations up to and 

(10)pt+�(y) ≡ pt+�(y|os) = � pt+�(y|ys)ps(ys|os)dys.

(11)pt+�(y|ot, os) = pt+�(y|os),

including time t, hence it includes Os. Thus, {Ot,Os} = Ot, 
and the identity (11) can be written equivalently as

where the right hand side is the climatology (10). This is 
precisely the definition of generalized unpredictability pro-
posed above. Thus, a climatology based on a forecast initial-
ized in the finite past yields a definition of predictability that 
is consistent with the definition of conditional independence. 
Taking the limit s → ∞ recovers the traditional definition of 
predictability.

Generalized predictability offers a new way to identify 
regime-dependent predictability. To illustrate, consider 
mega-droughts. Presumably, weather behaves differently 
according to whether a drought is occurring or not. During 
the middle of a mega-drought, observations from one year 
ago effectively localize the climate in a mega-drought. Thus, 
for t − s = 1 year, the forecast and conditional climatology 
both describe the same mega-drought, so predictability of 
the mega-drought itself is attenuated, allowing predictability 
of weather during the drought to be identified. In this way, 
regime-dependent weather predictability can be diagnosed 
by varying t while holding t − s constant: the parameter t 
controls the temporal location while t − s controls the time 
scales of interest. On the other hand, as s → ∞, the condi-
tional climatology broadens to describe both droughts and 
non-droughts, thereby allowing us to quantify predictability 
of the drought itself. This approach to isolating short-period 
predictability differs fundamentally from time-filtering. The 
fact that defining a conditional climatology as (10) can act to 
filter predictability of processes on time scales beyond t − s 
does not seem to have been recognized previously.

In this paper, the current climate is understood to be the 
relevant climatology. Accordingly, in the remainder of this 
paper, we suppress the conditional os and adopt the implicit 
definition (10) for the climatological distribution.

4 � Measures of predictability in a changing climate

By definition, a variable is unpredictable if the forecast and 
climatological distributions are identical. It is natural, then, 
to quantify predictability by some measure of the difference 
in distributions. However, no single measure can satisfy all 
purposes: some differences are more important than others, 
depending on the application. For instance, a civil engineer 
may be interested in the change in average rainfall while an 
emergency manager may be interested in the change in extreme 
rainfall. In choosing a measure, it is important to distinguish 
between predictability and utility (Palmer 2002). Utility is a 
measure of the benefit derived from a prediction. Because 
benefit depends on the arbitrary user, no universal measure of 

(12)
pt+�(y|ot) = pt+�(y|os) for generalized unpredictability,
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utility can be defined. Nevertheless, predictability and utility 
are related: if an event is unpredictable, then a forecast cannot 
add utility relative to that which is available from the climato-
logical distribution. Thus, predictability analysis determines 
whether a forecast can add utility beyond the climatological 
distribution. Another nuance is that, technically, any difference 
in distribution constitutes predictability, but the difference may 
be so slight as to have no utility. These considerations imply 
that predictability is a necessary but not sufficient condition 
for utility.

Although no unique measure of predictability exists, 
an attractive measure is relative entropy (also called Kull-
back–Leibler Divergence), which is a central quantity in infor-
mation theory and arises naturally in a number of disciplines, 
including communication, finance, statistical mechanics, and 
statistics (Kullback 1968; Cover and Thomas 1991; Mackay 
2003). The relative entropy between two distributions p(x) and 
q(x) is defined as

A basic property of this measure is that it vanishes if and 
only if p = q, otherwise it is positive. Additional reasons for 
preferring relative entropy will emerge below, but one par-
ticular application is worth mentioning here. A reasonable 
definition of the value of a forecast is the increase in wealth 
that results from knowing the forecast. In the absence of a 
credible forecast, an investor could use the climatological 
distribution inferred from past observations to devise a prof-
itable investment strategy. This approach is very common 
in the insurance industry, for instance. The question arises 
as to how much can an investor increase his return by using 
the forecast distribution. A strikingly simple answer is that 
the difference in rate at which wealth is doubled by the best 
investment strategy equals the relative entropy between the 
forecast and climatological distributions (Cover and Thomas 
1991).

Following the above reasoning, the cost of ignoring the 
climate forecast—i.e., the money you lose by not taking into 
account climate change and initial condition information—is 
measured by the relative entropy between the forecast and the 
initial climatology pt(y):

This measure depends on ot and �. Averaging RT over obser-
vations yields a new measure, which we called total climate 
predictability MT,

This measure depends only on lead time �. We will show 
that total climate predictability MT can be decomposed as

(13)R[p(x); q(x)] = ∫ p(x) log
p(x)

q(x)
dx.

(14)RT = R
[
pt+�(y|ot); pt(y)

]
.

(15)MT = ∫ RTp(ot)dot.

where MIV is a measure of initial-value predictability called 
mutual information, proposed by DelSole (2004), and MF 
is a measure of forced predictability proposed by Bransta-
tor and Teng (2010). Thus, the previously proposed meas-
ures of predictability MIV and MF emerge naturally in our 
framework.

To show the above, it proves convenient to define the expec-
tation operators

where q(⋅) is an arbitrary function. Then, total climate pre-
dictability (15) can be written equivalently as

The logarithmic ratio can be partitioned as

Three distinct distributions appear in the above identity: 
the forecast distribution pt+�(y|ot), and the climatological 
distributions pt(y) and pt+�(y). These three distributions are 
illustrated schematically in Fig. 3a. Substituting (20) into 
(19) and using the fact that the expectation operator is linear 
yields

The two terms on the right correspond to the terms in the 
decomposition (16).

The first term on the right of (21) involves the quantity

which is the relative entropy between the forecast pt+�(y|ot) 
and climatology pt+�(y). Kleeman (2002) proposed RIV as a 
measure of initial-value predictability. This measure depends 
on lead time � and initial condition through ot. Averaging 
RIV over p(ot) yields a quantity called mutual information:

where pt+�(y, ot) = pt+�(y|ot)p(ot) has been used. DelSole 
(2004) proposed MIV as a measure of average initial-value 

(16)
MT = MIV +MF,

(17)EY|O
[
q(y)

]
= ∫ pt+�(y|ot)q(y)dy

(18)EO[q(o)] = ∫ p(ot)q(ot)dot,

(19)MT = EO

[
EY|O

[
log

pt+�(y|ot)
pt(y)

]]
.

(20)log
pt+�(y|ot)
pt(y)

= log
pt+�(y|ot)
pt+�(y)

+ log
pt+�(y)

pt(y)
.

(21)

MT = EO

[
EY|O

[
log

pt+�(y|ot)
pt+�(y)

]]
+ EO

[
EY|O

[
log

pt+�(y)

pt(y)

]]
.

(22)

RIV = EY|O

[
log

pt+�(y|ot)
pt+�(y)

]
= ∫ pt+�(y|ot) log

pt+�(y|ot)
pt+�(y)

dy,

(23)

MIV = ∫ RIVp(ot)dot = ∬ pt+�(y, ot) log
pt+�(y, ot)

pt+�(y)p(ot)
dydot,
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predictability. This measure depends on lead time � but not 
on ot (because ot has been integrated out).

The second term on the right of (21) can be written as

which is the relative entropy between the two climatologies 
pt+�(y) and pt(y). In deriving this equation, we make use of 
the fact that the forecast and climatological distribution are 
related through the probability law

which effectively eliminates the initial condition variable 
ot in the measure of forced predictability MF (as we would 
expect).

The above measures are close to those proposed by Bran-
stator and Teng (2010). Specifically, Branstator and Teng 
(2010) estimated the climatology from “an ensemble of 
realizations, each beginning long before t = 0 and each expe-
riencing the same time-dependent external forcing”. This 
procedure is tantamount to averaging over initial conditions 
and therefore is equivalent to our measure MF. On the other 
hand, Branstator and Teng measure initial value predict-
ability using the relative entropy between the forecast and 
climatology without averaging over initial conditions, which 

(24)MF = EO

[
EY|O

[
log

pt+�(y)

pt(y)

]]
= R

[
pt+�(y); pt(y)

]
,

(25)∫ pt+�(y|ot)p(ot)dot = pt+�(y),

is equivalent to our measure RIV. Branstator and Teng then 
add these two measures together to quantify total predict-
ability. The sum MF + RIV quantifies the predictability due 
to changing climatology and the particular forecast. That 
is, this measure is a function of both lead time and initial 
condition, and hence is specific to a particular initial condi-
tion. In contrast, our proposed measure MT = MF +MIV is 
independent of initial condition and quantifies predictability, 
or rate of increase in wealth, in an average sense over all 
initial conditions, and is therefore analogous to familiar skill 
measures that are averaged over initial conditions.

The above derivation clarifies that certain previously pro-
posed measures of predictability can be summed together 
to produce a sensible measure of total climate predictabil-
ity MT. Each term in the identity (16) is either a relative 
entropy, or an average of a relative entropy. Therefore, the 
attractive properties of relative entropy carry over to MT. 
Specifically, the individual terms in (16) possess the follow-
ing attractive properties:

1.	 MIV and MF are non-negative.
2.	 MIV vanishes if and only if Y at t + � is independent of 

Ot.
3.	 MF vanishes if and only if the climatologies at t and t + � 

are identical.
4.	 MIV and MF are invariant to invertible, nonlinear trans-

formations of Y.
5.	 MIV and MF have natural generalizations to multivariate 

distributions.

The first three properties convey the notion of a “distance” 
between distributions: MIV and MF vanish if the two distribu-
tions in question are identical, and is positive otherwise. The 
fourth property implies the variable Y can be transformed 
nonlinearly without altering predictability. Any reasonable 
measure of predictability should possess this invariance 
property. The fifth property implies that the above meas-
ures can be generalized to an arbitrary number of variables. 
Remarkably, multivariate measures of predictability satisfy 
the same properties, including invariance to invertible, non-
linear cross-variable transformations among variables in the 
same random vector. Finally, each term has attractive inter-
pretations in terms of investment strategies.

While our definition of initial-value predictability is clearly 
based on dependence (e.g., MIV vanishes if and only if Y is 
independent of Ot), it might not be obvious that forced predict-
ability also is based on dependence. To see that this is so, note 
that the concept of dependence applies not only to random 
variables, but also to parameters (Dawid 1979). Specifically, 
the distribution of Y may be derived from a statistical model 
involving a parameter �. In this case, the distribution of Y may 
depend on �, but the joint distribution between Y and � does 
not exist because � is not a random variable. The statement 
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Fig. 3   Schematic of the spread of the three distributions relevant to 
quantifying decadal predictability (a) and the corresponding relative 
entropies (b). Schematics are based on results from Branstator and 
Teng (2010) for upper 300 m ocean temperature anomalies in model 
simulations. This figure is redrawn from DelSole (2017)
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that Y is independent of � expresses the fact that the distribu-
tion of Y is the same for all values of �. As a result of the 
properties discussed above, MF is non-zero if and only if the 
climatological distribution depends on the parameter �. Thus, 
MF measures the degree to which the climatology changes in 
time. If the climatological distribution does not change when � 
is varied, then it is independent of �. Thus, forced predictabil-
ity can be interpreted as reflecting a (generalized) dependence 
of the climatological distribution on lead time �.

Another indication that our proposed framework is sen-
sible is that, based on the above measures, initial-value pre-
dictability of a Markov process decays with lead time under 
very general conditions. This property conforms with our 
intuition that a system should become less predictable as 
lead time advances. This property holds even for the condi-
tional climatology (10), which is remarkable given that in 
the generalized case both forecast and climatology evolve 
in time. Our proof of this property follows that of Cover and 
Thomas (1991) (see Sect. 2.9). To prove this property, it is 
necessary to modify our notation slightly. Accordingly, let 
Yt denote the random variable at time t, and let the joint dis-
tribution between Yt+� and Yt under different conditionals be

The relative entropy between the two joint distributions (26) 
can be decomposed in two different ways using the chain 
rule for relative entropy (Cover and Thomas 1991, Theo-
rem 2.5.3). The first is

Focusing on the second line, the two distributions involved 
are identical owing to the Markov property (4), hence the 
relative entropy between them vanishes. The second decom-
position is

There is no nice simplification of the second line, but we 
know that it is non-negative since relative entropy itself 
is always non-negative. Taking this fact into account after 
equating (27) and (28) yields the inequality

This proves that the relative entropy between forecast and 
generalized climatological distribution (10) is a non-increas-
ing function of lead time. This proof makes no assumption 
about time scales and therefore holds for arbitrary s < t.

A schematic of the different predictability measures is 
shown in Fig. 3b. Initial-value predictability decays monotoni-
cally with lead time, but total climate predictability does not 

(26)p(yt+� , yt|ot) and p(yt+� , yt|os).

(27)

R[p(yt+� , yt|ot); p(yt+� , yt|os)] = R[p(yt|ot); p(yt|os)]
+ R[p(yt+� |yt, ot); p(yt+� |yt, os)].

(28)

R[p(yt+� , yt|ot); p(yt+� , yt|os)] = R[p(yt+� |ot); p(yt+� |os)]
+ R[p(yt|yt+� , ot); p(yt|yt+� , os)]

(29)R[p(yt+� |ot); p(yt+� |os)] ≤ R[p(yt|ot); p(yt|os)].

because external forcing can cause changes in the climatologi-
cal distribution that increase with time.

For joint Gaussian distributions, the above measures depend 
only on the means and variances of the underlying distribu-
tions. To show this, let

We emphasize that �Y|O generally is a function of ot. A 
standard result is that mutual information for joint normally 
distributed random variables is

This measure depends on the ratio of variances �2
Y|O∕�

2
Y
, 

which is called the noise-to-total ratio because variance in 
the forecast distribution is associated with uncertainty or 
noise. Similarly, a standard result is that the relative entropy 
for normal distributions is

This expression clearly vanishes when the two climatologi-
cal distributions are equal. Finally, total predictability is 
derived from (16).

5 � Predictability of a forced AR(1) processes

This section illustrates predictability in an exactly solvable 
model, namely a first order autoregressive model. Such models 
are called stochastic because they contain random variables as 
part of their dynamics. Stochastic models have limited predict-
ability because the transition between two states is uncertain 
even if the initial state is known exactly. In contrast, nonlinear 
chaotic systems have limited predictability because of instabil-
ity with respect to initial conditions. Nevertheless, stochastic 
models can be difficult to distinguish from chaotic deterministic 
systems, hence the predictability of simple stochastic models 
can give insight into the predictability of deterministic systems.

Consider a stochastic process Yt governed by a forced AR(1) 
model

where Wt is a stochastic process with zero mean and ft is 
a deterministic function of time (e.g., it may be constant, 
vary periodically, or contain a long-term trend). The last 

(30)pt+�(y|ot) ∼ (
�Y|O, �

2
Y|O

)
forecast

(31)pt+�(y) ∼  (
�Y , �

2
Y

)
climatology at t + �

(32)pt(y) ∼  (
�U , �

2
U

)
climatology at t.

(33)MIV = −
1

2
log

(
�2
Y|O

�2
Y

)
.

(34)MF = −
1

2
log

(
�2
Y

�2
U

)
+

1

2

�2
Y

�2
U

+
(�Y − �U)

2

2�2
U

−
1

2
.

(35)Yt = �Yt−1 +Wt + ft,
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assumption is made merely for simplicity— ft could be a 
random variable, but this generalization would not change 
our conclusions regarding the predictability of Yt because 
of the linearity of the model (35). In fact, we will show that 
the predictability of Yt is independent of a deterministic ft.

We assume |𝜙| < 1, in which case the model (35) is sta-
ble. To compute distributions of Yt, the distribution of Wt 
needs to be specified. Here, Wt is assumed to be Gaussian 
white noise with zero mean and variance �2

W
.

In order to make a prediction, observations of the process 
must exist. Observations generally are imperfect. Account-
ing for errors in observation is not interesting for an AR(1) 
process because such processes are stable and hence ini-
tial condition errors are damped with lead time (in contrast 
to chaotic systems). Accordingly, only the case of perfect 
observations are considered. Suppose, then, that we have a 
set of perfect observations {y0, y−1, y−2,…}.

To assess the predictability of Yt, the conditional distribu-
tion of Yt given the observations needs to be computed. It is 
clear from (35) that

This identity reflects the Markov property of an AR(1) pro-
cess. One might question whether past observations are truly 
irrelevant given that Yt−2 and Yt are autocorrelated. However, 
(35) shows that all information derivable from the past that 
is relevant to predicting Yt is contained in Yt−1. Although Yt 
and Yt−2 are correlated, all predictive information in Yt−2 is 
embedded in Yt−1. Thus, once Yt−1 is known, any observation 
prior to Yt−1 becomes irrelevant. Yt and {Yt−2, Yt−3,…} are 
said to be conditionally independent given Yt−1.

Suppose the observed value at t = 0 is y0. What is the 
appropriate prediction for Y1? First, the prediction should be 
probabilistic because the state at t = 1 is uncertain owing to 
the random process Wt. Second, since Y1 = �y0 +W1 + f1, the 
state at t = 1 is a constant (�y0 + f1) plus a Gaussian random 
variable Wt, so the form of the distribution must be Gaussian. 
It is sufficient, therefore, to determine the mean and variance 
of Y1. This mean and variance should be conditioned on the 
initial condition Y0 = yo. Specifically, the mean of Y condi-
tioned on the observation y0 is

where we have used the fact that y0 and f1 are constant under 
the conditional distribution, and that Wt has zero mean 
regardless of the conditional. The conditional variance is

where we have used the fact that adding a constant to a ran-
dom variable does not alter variance. It follows that the fore-
cast distribution after one step is

(36)pt(y|yt−1, yt−2,…) = pt(y|yt−1).

(37)
E[Y1|yo] = E[�Y0 +W1 + f1|y0] = �y0 + f1 + E[W1] = �y0 + f1,

(38)
var[Y1|y0] = var[�y0 +W1 + f1|y0] = var[W1|y0] = var[W1] = �2

W
,

Note that the initial condition y0 and forcing f1 determine the 
mean of the forecast distribution, but play no role in forecast 
variance. This is a property of linear systems that may not 
carry over to nonlinear dynamical systems.

It is a standard exercise to show that the general solution to 
the forced AR(1) model (35) is

The conditional mean for arbitrary t is therefore

and the conditional variance is

where we have used standard summation formulas for geo-
metric series and the fact that the Wt’s are independent. Con-
solidating these results leads to the forecast distribution for 
general t:

As before, the initial condition and forcing affect only the 
mean of the forecast distribution. The behavior of the fore-
cast distribution for ft = constant is illustrated in Fig. 4. As 
time advances, the mean of the distribution travels toward 
the mean of the asymptotic (i.e., climatological) distribution. 
Also, the distribution spreads out. Initially, the distribution 
is narrow because the initial condition was perfectly known, 
but the distribution spreads out as time advances because 
of the constant addition of uncertainty with each time step.

Is Yt predictable? To decide this, the forecast and climato-
logical distributions must be compared. What is the climato-
logical distribution in this example? As discussed in Sect. 2, 
the climatology is the asymptotic forecast distribution in the 
limit of large lead �, as indicated in (8). It is a simple exercise 
to show that the forecast distribution can be written equiva-
lently as

For instance, substituting s = t recovers (43). Taking the 
limit s → ∞ gives

(39)p1(y|y0) ∼  (
�y0 + f1, �

2
W

)
.

(40)Yt = �ty0 +

t−1∑

j=0

�jWt−j +

t−1∑

j=0

�jft−j.

(41)E[Yt|y0] = �ty0 +

t−1∑

j=0

�jft−j,

(42)

var[Yt|y0] = var

[
t−1∑

j=0

�jWt−j

]
=

t−1∑

j=0

�2
W
�2j = �2

W

1 − �2t

1 − �2
,

(43)pt(y|y0) ∼ 
(
�ty0 +

t−1∑

j=0

�jft−j, �
2
W

1 − �2t

1 − �2

)
.

(44)pt(y|yt−s) ∼ 
(
�syt−s +

s−1∑

j=0

�jft−j, �
2
W

1 − �2s

1 − �2

)
.
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Note that the above distribution is independent of the initial 
condition used in the infinite past. Also, the climatological 
distribution may be non-stationary because the mean of the 
distribution may depend on time through ft.

Predictability requires comparing (44) and (45). This 
comparison is facilitated by expressing means in terms of 
the (time-varying) climatological mean

The mean of the forecast distribution (44) can be written in 
terms of �Y (t) as

We define the anomaly as the deviation from the climato-
logical mean:

(45)lim
s→∞

pt(y|yt−s) ∼ 
(

∞∑

j=0

�jft−j,
�2
W

1 − �2

)
.

(46)�Y (t) =

∞∑

j=0

�jft−j.

(47)

�Y|O(t) = �syt−s +

s−1∑

j=0

�jft−j

= �syt−s +

∞∑

j=0

�jft−j −

∞∑

j=s

�jft−j

= �syt−s +

∞∑

j=0

�jft−j −

∞∑

j=0

�j+sft−s−j

= �syt−s + �Y (t) − �s�Y (t − s)

In this notation, the forecast mean (47) can be written as

This equation shows that the mean of the forecast distribu-
tion corresponds to a damping of the initial anomaly plus the 
climatological mean �Y (t). For future reference, the variance 
of the climatological distribution (45) is denoted

Then the variance of the forecast distribution (44) is

Recall that predictability requires a difference between fore-
cast and climatological distributions. For Gaussian distribu-
tions, this implies a difference between means or a difference 
between variances. The difference in means is

and the ratio of variances is

The two distributions differ when � ≠ 0 and � is finite. This 
result makes intuitive sense: if � = 0, then Yt is merely white 
noise, hence unpredictable; if � is infinite then an infinite 
amount of noise has been accumulated in the forecast. 
Although the two distributions differ in a mathematical 
sense for finite � (and � ≠ 0), they may not differ in a prac-
tical sense if the difference is too small to detect with finite 
samples. The limit of predictability often is defined as the 
time after which some measure of the difference between 
the conditional and unconditional distributions exceed some 
(arbitrary) threshold.

Predictability as measured by mutual information (33) 
is

where (53) has been used for the noise-to-total ratio. Predict-
ability is maximum at � = 0 and decays monotonically to 
zero with increasing �. Importantly, this measure depends 
only on the parameter �. That is, predictability is independ-
ent of initial condition, noise variance �W, and forcing ft. 
Values of � close to one correspond to processes with “long 
memory” (i.e., their autocorrelation takes many steps to 
decay). Therefore, stochastic processes with longer memory 
have larger predictability, consistent with intuition.

(48)y�
t
= yt − �Y (t).

(49)�Y|O(t) = �sy�
t−s

+ �Y (t).

(50)�2
Y
=

�2
W

1 − �2
.

(51)�2
Y|O = �2

Y

(
1 − �2�

)
.

(52)�Y|O(t) − �Y (t) = ��y�
t−�

,

(53)
�2
Y|O

�2
Y

= 1 − �2� .

(54)MIV = −
1

2
log

(
1 − �2�

)
,
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Fig. 4   The distribution of Yt at different times for an AR(1) process. 
The distributions have been offset in the vertical for clarity. The AR 
parameters are � = 0.99, �2

W
= 1, and ft = 0. The initial condition is 

chosen at the (unrealistically) large value of y0 = −35 to exaggerate 
changes in distribution. The axis labels have been omitted since only 
the qualitative behavior is important
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Neither (52) nor (53) depend on the forcing term ft. 
Thus, the forcing term contributes no initial-value pre-
dictability in this model. To see how this works, consider 
constant forcing ft = k, for which the climatological mean 
(46) is

where we have used standard summation formulas for geo-
metric series. The means of the forecast and climatological 
distributions [(44) and (45), respectively] for this choice of 
forcing are illustrated in Fig. 5a. As expected, the forecast 
mean relaxes monotonically toward the climatological mean. 
Note that the climatological distribution is constant, imply-
ing a stationary system. Now consider a time-dependent 
forcing, say ft = sin(�t), which may model an annual or 
diurnal cycle. It can be shown that

In this case, the climatological distribution depends on time 
and is therefore non-stationary. The mean of the forecast 
and climatological distributions for this case, for the same 

(55)�Y (t) =

∞∑

j=0

�jft−j = k

∞∑

j=0

�j =
k

1 − �
,

(56)�Y (t) =

∞∑

j=0

�j sin(�(t − j)) =
sin�t − � sin�(t + 1)

1 − 2� cos� − �2
.

initial condition used above, are shown in Fig. 5b. As in 
the stationary case, the forecast distribution relaxes toward 
the climatological distribution. Importantly, the rate of this 
relaxation is the same in both cases and determined by the 
parameter �. Thus, in this model, predictability is independ-
ent of ft and depends only on � and �.

To clarify the case of forced predictability, consider a 
forcing that is constant up to time t = 0, and is exponential 
thereafter:

This forcing might model anthropogenic climate change. In 
this case, the climatological distribution is

The relevant distributions are illustrated in Fig. 6a, where the 
forecast is initialized at time t = 0. The initial value predict-
ability still is given by (54). Forced predictability is given by 
(34), which takes on a particularly simple form in the present 
example because the climatological variances are identical:

(57)ft =

{
k t ≤ 0

k exp(𝛽t) t > 0
.

(58)𝜇Y (t) =

∞∑

j=0

𝜙jft−j =

{ k

1−𝜙
t ≤ 0

ke𝛽t
(

1−(𝜙e−𝛽 )t

1−𝜙e−𝛽
+

𝜙t

1−𝜙

)
t > 0.

(59)MF =

(
�Y (t) − �Y (0)

)2

2�2
Y

,
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Fig. 5   Time series of the forecast and climatological means of a 
forced AR(1) process for ft = constant (a) and ft = sin(2�t∕8) (b). 
The AR parameters are � = 0.9 and �2

W
= 1. The y-axis label has been 

omitted since only the qualitative behavior is important
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Fig. 6   The 66% confidence intervals for forecast and climatological 
distributions for an AR1 process with exponential forcing (a), and the 
corresponding measures of initial-value, forced, and total climate pre-
dictability (b). The forcing is specified in (57) and the model param-
eters are � = 0.6, � = 0.1, k = 1, and �W = 1. The initial condition is 
at t = 0 and equal to four standard deviations above the climatological 
mean (a large initial perturbation was chosen so that the forecast can 
be distinguished from the climatologies). “Initial climatology” refers 
to the climatological distribution at time t = 0 and persisted forward 
in time
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where �Y (t) is defined in (58). These measures are shown 
in Fig. 6b. Total climate predictability is the sum MF and 
MIV . As discussed in Sect. 4, initial-value predictability 
decays with lead time, but total climate predictability can 
increase with lead time because of forced predictability.

The above analysis assumed a deterministic forcing ft. 
If, instead, ft were a stochastic process with a predictable 
time scale much longer than that of Yt, then it would still 
be approximately a deterministic function on the short time 
scales relevant for Yt. Thus, the climatology could have been 
defined by evaluating (44) using a finite value of s, chosen 
such that t − s is short compared to the predictable time 
scale of ft, but long compared to the predictable time scale 
of Yt. An important point is that the model for the joint 
variable (Yt, ft) would have two predictable time scales: a 
relatively short time scale for Yt and a much longer time 
scale for ft. The above analysis illustrates how the short 
predictable time scale of Yt can be defined even though it 
is dynamically coupled to a variable ft with a much longer 
predictable time scale.

6 � Conclusion

This paper discussed limitations of the standard framework 
of predictability and proposed a generalized framework for 
resolving these limitations. In the standard framework, an 
event is unpredictable from a given set of observations if it 
is independent of those observations. This definition requires 
comparing two distributions: one that is conditioned on obser-
vations and one that is not. These distribution are called the 
forecast and climatological distributions, respectively. For 
transitive systems, the climatological distribution is the fore-
cast distribution initialized in the infinite past. The framework 
resulting from this definition is problematic if one is interested 
in climate changes due to external forcing, or if the climato-
logical distribution dictated by the governing equations is too 
broad (i.e., describes the current climate and other climates 
that are very different from the present one). In the first case, 
an inevitable consequence of any sensible definition of predict-
ability is that forced variability, such as that caused by human 
activities or annual cycles of solar insolation, must be sub-
sumed in the specification of the climatological distribution. 
As a result, predictions of forced variability cannot constitute 
initial-value predictability because predictability requires a dif-
ference in distributions. Following Lorenz (1975), a new type 
of predictability, which we call forced predictability, is defined 
based on differences in climatological distribution between 
different times. We propose a general measure, called total 
climate predictability, that captures both forced and initial-
value predictability. This new measure has a natural decom-
position into measures that have been proposed previously. 
Specifically, it emerges naturally that forced predictability is 

measured by the relative entropy between the initial and final 
climatologies, as proposed by Branstator and Teng (2010), and 
initial-value predictability is measured by mutual information, 
as proposed by DelSole (2004). The new measure is invariant 
to nonlinear transformations of the variables and generalizes 
naturally to multivariate distributions. Most of these concepts 
are illustrated in a simple model in which all distributions can 
be expressed in closed form.

The above framework has many attractive features but still 
may be unsatisfying. In particular, it defines the climatological 
distribution as the forecast distribution initialized in the infinite 
past, which may be much broader than is appropriate for cer-
tain kinds of predictability questions. For instance, the exist-
ence of abrupt climate change in paleo-climate records dem-
onstrates that very different climates can occur under nearly 
the same external forcing. This spectrum of climates should 
be described by the climatological distribution. However, if 
predictability studies were to use such a broad climatology, 
then weather would be deemed predictable for as long as the 
associated forecast predicts that the climate has not shifted, 
possibly for years. Many studies implicitly justify a narrower 
distribution by selecting a climate model that simulates the cli-
mate of the past few decades when given the present external 
forcing. Whether this criterion leads to overly narrow estimates 
of the climatological distributions is unclear. In any case, we 
propose a generalized predictability that provides a formalism 
for filtering out predictability due to long time scale processes 
so that predictability on short time scales can be identified. 
This framework is based on a conditional climatology, which 
is the forecast distribution initialized at a finite earlier time. 
Using such a conditional climatology filters out predictability 
contributions from long time-scale processes. This generalized 
framework follows naturally from the definition of conditional 
independence, and therefore retains consistency with the con-
cept of dependence. Furthermore, generalized predictability 
retains the familiar property that initial-value predictability 
decays with lead time.
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